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On the Ergodic Properties of Glauber Dynamics 
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We show that if there is an infinite volume Gibbs measure which satisfies a 
logarithmic Sobolev inequality with local coefficients of moderate growth, then 
the corresponding stochastic dynamics decays to equilibrium exponentially fast 
in the uniform norm. 
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INTRODUCTION 

Throughout  this article, we will be studying models of finite-range, shift- 
invariant lattice gases. To be more precise, the setting will be the following. 

T h e  L a t t i c e .  The lattice underlying our models will be the 
d-dimensional square lattice Z d for some fixed d e Z + ;  and, for k =  
(k ~ ..... k d) e Z a, we will use the norm Ikl - max~ ~<~<a Ikq. Given A _ 7/'/, we 
will use A C = Z ' ~ A  to denote the complement of  A, IAI to denote the 
cardinality of  A, and k + A  to denote the translate { k + j : j ~ A }  of  A by 
k ~ Z d. Finally, we will occasionally use the notat ion A c c  Z d to mean that 
IAI < ~ ,  and ~ will stand for the set of  all nonempty  A c c  Z 't. 

The Spin and Configuration Spaces. The spin space M for our 
model will be a finite set (with the discrete topology),  and our configura- 

�9 zd 
tton space will be the product  space M = M (endowed with the product  
topology). Given a nonempty  X~_Z d, we will use x e M ~ - - . x x ~ M  x to 
denote the natural projection taking M onto M x, Bx(M)  and Cx(M)  to 
denote the sets of functions on M of the form x ~ M ~ ~p(xx) ~ R as ~p runs 
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over, respectively, the set B(M  x) of bounded, Borel-measurable and the set 
C(M x) of continuous functions on MX; and ~x  will denote the a-algebra 
over M generated by the elements of Bx(M). When X =  {k}, we will use 
x k in place of Xlkl; and when X = Z  d, it is clear that fix is precisely the 
Borel field MM over M, and we will simply write f f  instead of ffz"- Also, 
we will say that a function f :  M--* R is local and will write f ~  Co(M) if it 
is an element of Cx(M) for some X~ ~; and, for any bounded f :  M --* R, 
[If[[. will be used to denote the uniform norm (i.e., "sup") norm of f 
Finally, for each k ~ 7/u, we define the shift transformation ok: M---, M so 
that (0kX)j=Xk+j for every x E M  and every j~7/a. 

For various constructions, it will be convenient to introduce some 
additional notation. In the first place, given ~ :~ X c  Z d, we define 

(x x, yXC) e M x x M xc ~-+ x x .yXC ~ M 

so that x x .yXC is the element z~ M determined by 

Zx=X x and Zxc----y xc 

and, for f:M--+R and yXCeMXC, we define f ( ' l  yXC) on M x and 
f x ( ' [yXC)  on M by 

x X m M X ~  f ( x X  I yXC) m f ( x X  .yXC) 

and 

x m M ~  f x ( x  l yXC)=-- f ( x x . y  xc) 

Second, for y ~ M ,  we write f x ( x  I y) insteady o f f x ( x  [ Yxc); and, when 
X =  {k} we will usefk( . [y  ) in place off lkl(-  [ y). Since both 

(x x yXC) e M  x x M  x c ~ x  x ~ e M  

(x, y) ~MZ~--~ Xx *Yxc E M 

are continuous maps, all the preceding constructions preserve both con- 
tinuity and measurability. 

Measures and Partial Differences. For nonempty X_~Z a, w e  

use ~J~(M x) to denote the space of Borel probability measures /x on 
x x (M , ~M), and give ~I , (M x) the topology of weak convergence, namely 

{It,,} ~--- 9JI,(M x) converges to/1, written p,,~/x,  means that 

~u.,, ~o I x  every cp ~ dp for ~ C(M "v) 
a M  
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Next, given cpeB(M x) and peOJl~(MX), we will often write <r to 
denote ~Mx~Odp; and, when ~ # X c T / a ,  i.teOJl~(M x) and ~oeB(M) 
[ ~o e C(M) ], we define the ~xc-measurable (continuous) mapping 

x e M ~--~ (~0) x.,,(x) = ffM.,.T~(UI x) ~(dU) 

Throughout, we will reserve 2 to denote the normalized counting measure 
on M. Further, will we write <r in place of <r and <r when 
X =  {k}. Finally, for each Ye ~, we define the partial difference operator 
Or: B(M) ---, B(M) by 

Or~p = < cp> r - -  cp (0.1) 

and use O k when Y= {k}. 

Potentials and Gibbs States. A potential is a family f =  
{Jx:X~ ~} where, for each X e  ~d, Jxe  Cx(M). Throughout, we will be 
assuming that our potentials are shift invariant in the sense that J k + x =  
Jx o O k, for all X e  ~ and k e Z a. Further, we assume that J has finite range 
R e 7/+: that is, for each X e ~, Jx = 0 if 0 e X ~  [ - R ,  R] a. Given J ,  we 
define the corresponding local specification I~ = ~ ( J )  to be the collection of 
Markov operators 

[ [ExcP](~) =IM (P(Y) EX(dy[~) 

-Zx (~xc )  ~P(Yx "~xc) exp[ - UX(yx "~xc)]  ~.(dy) 

where k = )z,, 

V'V ~ Z JA, 
Ae~ 

A c ~ X # ~  

Zx(~xc)  --IM exp[ -- UX(yx "~xc)]  k(dy) 

Finally, we say that p e 93~1(M) is a Gibbs state for ~ ( J )  and write p e @ ( ] )  
if 

( ~:x~p, p> = < q,,/~> for all Xe  ~ and ~ e Co(M) 
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Glauber Dynamics. Given a potential J ,  we will say that the 
{ P , : t > 0 }  is a Glauber dynamics for j if {e,:t>0} is a Markov semi- 
group on C(M) with the property that 

(P/P, ~)L2(~) = (PA b, (P)L'-(~) for all ~o, ~b s C(M) (0.2) 

There are various ways in which Glauber dynamics can be constructed. 
However, the type of conclusions reached in this article do not depend 
heavily on the particular choice. In fact, standard comparison arguments 
allow one to transfer these results proved for one choice of dynamics to 
other choices. Thus, we will restrict our attention to the dynamics which is 
determined by the operator s on Co(M) given by 

~ =  ~ (E{kl~p--~) (0.3) 
k E Z  d 

That is, A a determines {P,:  t > 0 }  in the sense that there is precisely one 
Markov semigroup {P, : t  > 0} on C(M) with the property that 

Pt cp - cp = P, ~ "Y9 ds, t e (0 ,  oo) and ~oe Co(M) 

The Dirichlet Form.  A key role in our analysis will be played by 
the Dirichlet form associated with our Glauber dynamics. Actually, one 
cannot describe a Dirichlet form for a Glauber dynamics without also 
specifying a Gibbs state. For this reason, we begin by defining the local 
Dirichlet form of our Glauber dynamics and will then get the actual 
Dirichlet form corresponding to a particular Gibbs state by integration 
with respect to that Gibbs state. Thus, set 

b(~o, ~)(~) = ~ ~ [ (~o(q) - ~o(~))(~,(q) - ~(~,)) E lU(dql~)  
k c Z  d o M 

~ M and ~p, tp ~ C0(M) (0.4) 

It is then an easy matter to check that, for g ~ (5(J) ,  the Dirichlet form 4, 
associated with { P,: t > 0 } on L2(/z) satisfies 

~,~(~o, ~ , ) -  - (q, ,  ~ ) , ,  = (b(q,, ~)),~ (0.5) 

Remark. Everything that we do here could be done equally well in 
the setting of a continuous spin space when the Glauber dynamics is taken 
to be a diffusion. In fact, for technical reasons, the continuous setting is a 
little easier even though the underlying ideas are basically identical. 
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The purpose of this article is to clarify the connections between a 
potential J ,  the class of Gibbs states iS(J) ,  and Glauber dynamics 
associated with J .  

1. LOCAL S O B O L E V  I N E Q U A L I T I E S  A N D  
U N I F O R M  E R G O D I C I T Y  

Given p G (5(~) and B =  {flk:kG 7/d} _____. [0,  O0), we say that ~ satisfies 
a local logarithmic Sobolev inequality with coefficients B if 

~2 
IM ~ ~ 1 7 6 1 8 9  kl~Z dE ffk IElkl~--~llT'~,' 4o~Co(M) (1.1) 

The terminology local is used to distinguish such an inequality from the 
situation when the set B is bounded, in which case one says that/z satisfies 
a logarithmic Sobolev inequality. 

The purpose of this section is to see what can be said about the 
ergodic properties of associated Glauber dynamics when a local loga- 
rithmic Sobolev inequality holds and the coefficients have moderate growth 
(cf. Corollary 1.5 below). 3 

There are two ingredients in our program. The first of these is a 
general fact about Glauber dynamics corresponding to finite-range poten- 
tials and is a quantitative statement of the fact that, with very high 
probability, disturbances propagate at a f inite rate in such dynamics. The 
second is an extension of the Gross's integration lemma. 

L e m m a  2.1. Let R G t~ denote the range of interaction and set 

A , = { k ~ Z a : l k l ~ < n R )  for n E N  

Then, there exists A E(0, oo), depending only on R, d, and ca rd (M)+  
II U I~ II., such that, for each m e N, 

IlOkoP, q~ll.<~e,,(At) ~ II0kqOll .,  ~0~CA,,(M) (1.2) 
Ikl >/(m+n)R Ikl ~ m R  

where 

, ,-  i s m s / se~" 
(1.3) 

3 Local logarithmic Sobolev inequalities have been considered previously in refs. 17 and 8. 
However, the goal in these articles was somewhat different from the one here. 
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In particular, A can be chosen so that, in addition, for each q E [2, oo): 

IlPtqTll.~exp[A(m;+na'](2e,,(At, k~A, llakq)llu+llP,q)llq.,,) (1.4) 

Proof. The inequality in (1.2) is proved in Lemma 1.8 of  ref. 15. To 
prove (1.4), for each n e Z +, define 

L,er y'. (IFIklrp--rp) for ~osC(M)  
k~An-I  

It is then an elementary matter to show that L# r determines a Markov  
semigroup { P I / ' l : t > 0 }  on C(M) which leaves CA,(M) invariant. 
Moreover,  using (1.2) and the reasoning in Lemma 1.8 of  ref. 15, one can 
show that, with the same choice of  A s (0, co) and all m e N and n e 7/§ 

IIe,~o-e~,"'+n~oll,~e,(At) ~ II0k~011 u, rpEC,m(M) (1.5) 
keAm 

In order to pass from (1.5) to (1.4), we need to know that there exists 
a B s (0, Go) (with the required dependence) such that, for all n e 7/§ and 
~0 ~ CA,,_~(M): 

II ~0 II u ~< exp(Bna) II ~0 II l,.u (1.6) 

Indeed, when M is finite, one has that 

I1~oll ~ ~< (card(M)) MAI exp[ osc( UA)] lifo II ~,, 

for any A E ~ and ~o e CA(M).  4 

Given (1.5) and (1.6), one has, for any q e [ 2 ,  co), 

[[P,~o[l.<~ e.(At) y'. IlOk~Ol[.+ IlP~,"+"'~ol[. 
k e Am 

k~Am q IIPr 

<~exp[B(m:n)al(2e,(At)k~,,[[OkrPllu+llP, rP]lq.l, ) 

where, in the passage to the second line, we have used (1.6) and elementary 
interpolation. Hence, (1.4) follows after one makes a minor  adjustment. I 

4 This is the one place in which the continuous-spin setting is slightly more difficult. Namely, 
in that setting, (1.6) has to be replaced by an estimate in which the semigroup has been 
allowed to act for a little while. See Lemma 2.3 in ref. 15 for more details. 
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In order to demonstrate how we plan to use the contents of 
Lemma 1.1, we begin by considering the case when p satisfies a logarithmic 
Sobolev inequality. That is, suppose that [cf. (0.5)] 

fM(~ 2 (~2 log ~ < fir q~), q~ e C0(M) (1.71 

for some fie(O, ~). By Gross' integration lemma (cf. Theorem 6.1.4 in 
ref. 2), (1.7) implies that P, maps L2(/~) contractively into Lqm(/~), where 
q(t)=l+exp[2t/fl] and (cf. Corollary 6.1.17, ref. 2) that one has the 
spectral gap estimate 

m(p)  =inf{~;,(rp, ~o): l[~ol[2,/j = 1 and (r = 0)  .>.2//3 (1.8) 

Note that, by elementary spectral theory, (1.8) is equivalent to 

I Ie ,~o  - (~o);, 112,, ~< e-"t ;" l l  ~o - ( ~ o ) ,  [I 2,;, ( 1 . 9 )  

for all t e (0, oo) and ~oeL2(g). In order to replace these with statements 
about uniform convergence, let Oe(O, 1) be given and taken n =  [ t  2] + 1 
and q =  1 + e  2~1-~ in (1.4), and conclude that 

IIg, q~ll. ~< exp [ A(md + t2a) ] (2  exp(At-- t 2 log At) i ~ -  ~ k ~..,,,, Ila,,~oll,, 

+ IIP0,~0 II,_.,,) 

Thus, after replacing rp by rp - ( rp ) ; ,  and using (1.9), we arrive at the 
conclusion that, for each m e N, there exists a t(O, m)e  [ 1, oo) such that 

I[P,qo-(~o),,[I.~6exp[-Om(It)t] ~ [10kq011., ~OeCA.,(M) 
k G Am 

(1.10) 

whenever t>~t(O,m). In particular, together with (1.8), this tells us the 
following. 

Theorem 1.2. If/t e (5(,2") satisfies a logarithmic Sobolev inequality, 
then ~ ( j ) =  {It) and the associated Glauber dynamics acting on a local 
function ~o converges uniformly to (~0);, with exponential rate m(/t)> 0. 

In the remainder of this section we will show that uniform convergence 
of Glauber dynamics can sometimes be proved on the basis of a local 
logarithmic Sobolev inequality. However, in order to do so, we will require 
the following variant of Gross' integration lemma. 

822/81/5-6-10 
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Lemma 1.3. Assume that (1.1) holds, and let O < ~ T < t  be given. 
Next, suppose that q: [T, t] ~ [2, oo) is a differentiable, increasing func- 
tion, and define 

A(s)={k~Y_a'(l(S)flk~4(q(s)-l)} for ss[T,t] 
Then 

IIP,~ll q,,, • IIPT~0[I q,T, 

+ O(s) ~ ~kllOkPAoII;~,~dx, ~oeCo(M) (1.11) 
T k E A(sl 

Proof. Let ~p be a uniformly positive element of Co(M), and set 
~ps=PAo. Then [cf. Theorem 6.1.14 in ref. 2 and (0.4)] 

d 
ds [lcp.,. llqc,.)./, 

{: (,,)q"' 
~<q(s) -2 I[~P.,- I-qr dl(S ) 09 q(s) log II~0sllq.-),,, q( s ),It r s dill 

( ('9 q{s)/2 t - -4 (q ( s ) -  1) _/ . . . . . .  cp q~'v2) 

4(s) * - " "  Z Dk II~=tkl~0~q- " :  q{s)/2 2 

At the same time, for any q~ [2, ~ )  and positive q~E C(M) 

II ~:l kl ~o q/2 __ ~o q/2 I ~_ . 

= f f  ((p(y)q/2 __ ( ~ ( x ) q / 2 ) 2  ~=lkl(dy i x ) p(dx) 

=2f{f~,y)<~x(~O(Y)q/2-~o(x)q/2)2Elk}(dylx)}p(dx) 
q2 

] q/2 ~ 2/q 

q2 ~oqq:2(f{~.,y,<~,x(~O(y)_~o(x))2r_lkl(dylx)~ p(dx)) <'T 
q2 {~f ]2/q  

< ~  ~ ~,'~ l~p(y)-~o(x)lqn=lkl(dylx)#(dx)~ 

<21-2/qq 2 lifo %~,-~ Ilak~oll,~.,, 
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we arrive 

and (1.4) 

where 

Proof, 
Then, by (1.4), we find that 

IlP,~oll ~<e-m Z I[Ok~Pll.+exp(A(m+l+e'-At)"~ 
u k~.d,,, q -/[IP,~oll,., 

At the same time, by (1.11) with q(s)= 1 + exp{~'~-p(Kr)dr}, 

7 } IIe,~ll,.,<~llPr~ll2,,,+ O(s) ~, flkllOkP/P[l~,ds 
" T k E A ( s )  

But, for s >i Tin, k ~ A(s) ~ lkl i> mR + KoS, and so, by (1.2), 

2 
k ~ A ( s )  

q = 1 + exp (m) dr 

Choose n to be the smallest integer which dominates e2At. 

(1.13) 

flk IlOkP.,,~oll~--~ sup /~t IlOte.,.~oll.) IlOk~ll. 
[/[ > / m R  + t.'os k . ,  

Hence, after plugging this into the preceding and integrating, 
at (1.11). I 

Theorem 1.4. Let A~(0, o'o) be chosen so that (1.2) 
hold, and assume that (1.1) holds with some B satisfying 

s u p { f l k e x p ( - - I k l ' ~ ' k ~ Z a }  < ~ 1 7 6  2R/ 

Next, let p: [0, oo) ~ (0, oo) be a continuous, nonincreasing function which 
tends to 0 at oo and satisfies 

sup p( lk l ) f lk<4 forsome n s ~  
Ikl  > / n  

Finally, choose K>Xo-=(e2RA) v 1, and set 

To = min{s >/0 :p(xs) flk < 4 for all Ikl ~< n} 

Then there exists an M ~ [ 1 ,  oo) such that, for any m~[~, T>~T.,-  
To v mR/(K -- Xo), and t > T: 

for all 9sC. . , (M)  (1.12) 
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Finally, after another application of (1.2), one finds that, for all 
l >>. mR + tr 

llOtP.,.q~ll, ~< exp ( 2 -  [/1 "~2Rj 

Hence, after combining this with (1.13), it is an easy matter to find an M 
for which (1.12) holds. II 

Corollary 1.5. Let everything be as in the statement of Theorem 
1.4, and assume that, for some x > Xo, 

Then ( 5 ( J ) =  {p}, and 

lim LIP,~o-<~o>~,[t.=O forall ~peC(M) 

In fact, if t,,,e[Tm, oO) is determined by ~'~mp(Kr) dz=dlogt,,, and 
[to, oo)~-~ T~_(t)e [1, oo)is defined by 

f~k p(xr) dr=dlogt  (1.15) 
( t l  

then, for m e N and t s [ t,,, oo), 

IlP,~o-<~o),,ll.<<.g(t,m) (llPr^...~o-<~o),,ll2.,. + Me -'4' • Ilak~Pll.) 
k E A m 

for ~p e CI~,..(M). 

[( m,, l 
where K( t ,m) -exp  M 1+  td j j  (1.16) 

Proof. Given m e I~/, choose T,, as in Theorem 1.4, let T >  T,,,, and 
take 

q(t) = 1 +exp  p(K) dr , t> T 

and observe that, from (1.14) combined with (1.12), one gets first (1.16) 
and then 

lim [[P,~Pllu<~ller~Pl]2.~,, ~o e CA,,,(M ) (1.17) 
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Hence, if Eg denotes the orthogonal projection onto the subspace of L2(fl) 
which is invariant under extension to L2(/~) of the semigroup {P , : t>  0}, 
then, after letting T : oo and noting that Prep tends to Eg~p in L2(/t), we 
obtain 

lim IIP, g0ll. ~ Ilggq0ll2.~, cp �9 Co(M) 
t ~ o o  

as an easy application of the Spectral Theorem for self-adjoint semigroups 
of contractions. But this means that, for any pair of ~p and ~k from Co(M), 

(E~ cp, @)L-'(/,)< IIE~II2,. I1~11 ].. 

from which it is an easy step first to 

IIEg gol[ o~,. ~ IIEg~oll 2.. 

and then to the conclusion that Egq~=(q~)/, for all q~�9 In par- 
ticular, we now know that, for each ~p�9 PAo--.(q~).  in L2(/t), 
which, by (1.15) leads to asserted uniform convergence first for q~ �9 Co(M) 
and thence for all cp �9 C(M). II 

Corollary 1.6. Again let everything be as in Theorem 1.4, with a 
choice of A �9 (m(B), m) [cf. (1.8)]. If 

x d  
lim tp(t)>~ forsome 0 �9  1) 
, - ~  I - 0  

then, for each ~o �9 Co(M), there exists a T(~o)�9 (0, m) such that 

IIP,~o-(~o>. II. ~ 2 IIe ,oq~-(~o>.l l2, .  for all 

and so, if m(~) > 0, then 

lim t - ~  log IIP,~P- (~o). II. ~< - m(/~)  
t ~ O O  

t/> T(cp) 

Moreover, if 

tp( t )  _ 
lim~ ~ ~ ex  for some e > 0  

and 0c = exp(--2d/e), then, for each ~p �9 Co(M), there exists a T(q~) �9 (0, oo) 
such that 

I I P , ~ o - < g o > . l l . ~ 2  [IP~,~o-<q0>.ll2.. forall t>>. T(q~) 
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and so, if m(/ l )> O, then 

lim t -~ log IlP,cp- ( cp ) ,  II u ~ -otto(u) 
I ~ o o  

R e m a r k  1.7. In connection with the results in Corollary 1.6, it 
should be kept in mind that, at least for attractive systems, Holley 16) has 
shown that 

lim tallP,~o-(go)j, llu=O forsome f l>d andal lq~eCo(M) 

already implies that uniform convergence is taking place at an exponential 
rate. 

2. S U M M A R Y  

In this paper we have demonstrated that if any Gibbs measure satisfies 
a logarithmic Sobolev inequality, then that Gibbs state is the only one and, 
for local functions, the corresponding (Glauber) stochastic dynamics 
converges to it in the uniform norm at an exponentially rapid rate. This 
provides a uniqueness and ergodicity criterion which is based directly on 
the infinite-volume considerations, one which is therefore a priori free of 
anything having to do with finite-volume systems and their boundary con- 
ditions. (For some recent results involving finite-volume considerations, see 
refs. 14-16 and 8-13). Besides its esthetic value, this criterion may prove 
useful when it comes to understanding situations where the Dobrushin- 
Shlosman 14'5~ complete analyticity fails, but one still has some kind of good 
behavior on the large scale. 

Second, we have shown that a bona fide logarithmic Sobolev 
inequality can be replaced by a local version in which the coefficients have 
moderate growth (as a function of the distance from the origin). This 
observation generalizes a result in ref. 7, where sublinear growth of a finite- 
volume logarithmic Sobolev coefficient was considered. With the results 
proved here, one sees that linear growth is permissible as long as the slope 
is sufficiently small. In addition, these considerations provide an elegant 
framework for the description of the stochastic dynamics associated with 
spin systems having random interactions (cf. ref. 18, for example). Finally, 
we believe that they may also apply to other nonferromagnetic spin 
systems in which the strong analyticity conditions fail (e.g., the system 
discussed in ref. 3). For closely related results, see ref. 1; and to see how 
much better one can do in the ferromagnetic situation, see Part I of 
ref. 10. 
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